
Distributed development tools and management
approaches for the VxO environment: The Linux
lessons

Who? Jan Merka1 A. Szabo2 T. Narock1 T. King3 R. Walker3

From? 1GEST, University of Maryland Baltimore County, Baltimore, MD (jan.merka@gsfc.nasa.gov)

2NASA Goddard Space Flight Center, Greenbelt, MD

3IGPP, University of California, Los Angeles, CA

When? Virtual Observatories in Geosciences, Denver, CO
June 12–14, 2007



Abstract

Each NASA Virtual Observatory (VxO) is a distributed data
environment that communicates or will eventually
communicate with other VxOs and the entire VxO environment
will share some resources of which the most important one is
the metadata. Creation of SPASE data descriptions is a
wide-spread effort that is akin to Open Source Software (OSS)
development. Complex OSS projects, e.g. the Linux kernel,
rely on the network of trust, where the lead developers trust a
limited number of skilled developers, those in turn have their
own trusted collaborators and so on. It is apparent that the
VxO development is in many ways similar and the VxO teams
should consider employing tools and/or processes that facilitate
efficient development. As a particular example, we will focus
the presentation on discussing metadata exchange, creation
and the need for using a revision management system. We will
argue that distributed repositories, e.g. git, are more suitable
for VxOs than centralized systems (CVS, Subversion, . . . ).



VxO Environment

Distributed data sources
Distributed development (metadata, tools, . . . )
VxOs are not co-located
Did I say distributed again?

Question #1 How do we manage the development?

Question #2 What kind of tools can help us?

Question #3 To create or not to create the tools?

Answer The VxO development is similar to Open Source Software (OSS)
projects and we should study and employ their management
methods and development tools.



VxO Environment

Distributed data sources
Distributed development (metadata, tools, . . . )
VxOs are not co-located
Did I say distributed again?

Question #1 How do we manage the development?

Question #2 What kind of tools can help us?

Question #3 To create or not to create the tools?

Answer The VxO development is similar to Open Source Software (OSS)
projects and we should study and employ their management
methods and development tools.



VxO Environment

Distributed data sources
Distributed development (metadata, tools, . . . )
VxOs are not co-located
Did I say distributed again?

Question #1 How do we manage the development?

Question #2 What kind of tools can help us?

Question #3 To create or not to create the tools?

Answer The VxO development is similar to Open Source Software (OSS)
projects and we should study and employ their management
methods and development tools.



VxO Environment

Distributed data sources
Distributed development (metadata, tools, . . . )
VxOs are not co-located
Did I say distributed again?

Question #1 How do we manage the development?

Question #2 What kind of tools can help us?

Question #3 To create or not to create the tools?

Answer The VxO development is similar to Open Source Software (OSS)
projects and we should study and employ their management
methods and development tools.



VxO Environment

Distributed data sources
Distributed development (metadata, tools, . . . )
VxOs are not co-located
Did I say distributed again?

Question #1 How do we manage the development?

Question #2 What kind of tools can help us?

Question #3 To create or not to create the tools?

Answer The VxO development is similar to Open Source Software (OSS)
projects and we should study and employ their management
methods and development tools.



VxO Environment

Distributed data sources
Distributed development (metadata, tools, . . . )
VxOs are not co-located
Did I say distributed again?

Question #1 How do we manage the development?

Question #2 What kind of tools can help us?

Question #3 To create or not to create the tools?

Answer The VxO development is similar to Open Source Software (OSS)
projects and we should study and employ their management
methods and development tools.



VxO Environment

Distributed data sources
Distributed development (metadata, tools, . . . )
VxOs are not co-located
Did I say distributed again?

Question #1 How do we manage the development?

Question #2 What kind of tools can help us?

Question #3 To create or not to create the tools?

Answer The VxO development is similar to Open Source Software (OSS)
projects and we should study and employ their management
methods and development tools.



VxO Environment

Distributed data sources
Distributed development (metadata, tools, . . . )
VxOs are not co-located
Did I say distributed again?

Question #1 How do we manage the development?

Question #2 What kind of tools can help us?

Question #3 To create or not to create the tools?

Answer The VxO development is similar to Open Source Software (OSS)
projects and we should study and employ their management
methods and development tools.



The Metadata Example

Resource descriptions (observatory, instrument, data product, . . . )
are created and shared by various persons or groups across VxOs
Metadata exchange by email or direct download
Difficult to keep track of versions and content changes

Wait! What about metadata registries and registry servers? Can they
help?

Eeeeee, NO! Registries or registry servers are not a solution unless they provide
Source Code (Content) Management (SCM) features! Their
purpose is to find and deliver existing metadata, not to provide
assistance in metadata development.



The Metadata Example

Resource descriptions (observatory, instrument, data product, . . . )
are created and shared by various persons or groups across VxOs
Metadata exchange by email or direct download
Difficult to keep track of versions and content changes

Wait! What about metadata registries and registry servers? Can they
help?

Eeeeee, NO! Registries or registry servers are not a solution unless they provide
Source Code (Content) Management (SCM) features! Their
purpose is to find and deliver existing metadata, not to provide
assistance in metadata development.



The Metadata Example

Resource descriptions (observatory, instrument, data product, . . . )
are created and shared by various persons or groups across VxOs
Metadata exchange by email or direct download
Difficult to keep track of versions and content changes

Wait! What about metadata registries and registry servers? Can they
help?

Eeeeee, NO! Registries or registry servers are not a solution unless they provide
Source Code (Content) Management (SCM) features! Their
purpose is to find and deliver existing metadata, not to provide
assistance in metadata development.



The Metadata Example

Resource descriptions (observatory, instrument, data product, . . . )
are created and shared by various persons or groups across VxOs
Metadata exchange by email or direct download
Difficult to keep track of versions and content changes

Wait! What about metadata registries and registry servers? Can they
help?

Eeeeee, NO! Registries or registry servers are not a solution unless they provide
Source Code (Content) Management (SCM) features! Their
purpose is to find and deliver existing metadata, not to provide
assistance in metadata development.



The Metadata Example

Resource descriptions (observatory, instrument, data product, . . . )
are created and shared by various persons or groups across VxOs
Metadata exchange by email or direct download
Difficult to keep track of versions and content changes

Wait! What about metadata registries and registry servers? Can they
help?

Eeeeee, NO! Registries or registry servers are not a solution unless they provide
Source Code (Content) Management (SCM) features! Their
purpose is to find and deliver existing metadata, not to provide
assistance in metadata development.



OSS Development Approach

Definition Unexpected things(TM) happen!

The approach

Keep the work (source code, documentation, . . . ) in a content
management system (SCM)
Public access to the code and documentation — encourage usage
and testing
Communication via mailing lists.
Trusted developers update code

Example The most famous OSS project, Linux, employs a distributed SCM
system git to keep track of the content of its ∼22,000 files.



OSS Development Approach

Definition Unexpected things(TM) happen!

The approach

Keep the work (source code, documentation, . . . ) in a content
management system (SCM)
Public access to the code and documentation — encourage usage
and testing
Communication via mailing lists.
Trusted developers update code

Example The most famous OSS project, Linux, employs a distributed SCM
system git to keep track of the content of its ∼22,000 files.



OSS Development Approach

Definition Unexpected things(TM) happen!

The approach

Keep the work (source code, documentation, . . . ) in a content
management system (SCM)
Public access to the code and documentation — encourage usage
and testing
Communication via mailing lists.
Trusted developers update code

Example The most famous OSS project, Linux, employs a distributed SCM
system git to keep track of the content of its ∼22,000 files.



Centralized SCM

CVS, Subversion (SVN), Perforce, . . .



Distributed SCM

git, BitKeeper, Mercurial, bazaar-ng, . . .



Distributed SCM

git, BitKeeper, Mercurial, bazaar-ng, . . .



Why Does Linus Torvald Use git for Linux?1

Answer Because he created git.

Answer Because git is better than any other SCM.

Reliable
High performance
Distributed
Content manager

1Linus Torvald on git: http://www.youtube.com/watch?v=4XpnKHJAok8



Why Does Linus Torvald Use git for Linux?1

Answer Because he created git.

Answer Because git is better than any other SCM.

Reliable
High performance
Distributed
Content manager

1Linus Torvald on git: http://www.youtube.com/watch?v=4XpnKHJAok8



Why Does Linus Torvald Use git for Linux?1

Answer Because he created git.

Answer Because git is better than any other SCM.

Reliable
High performance
Distributed
Content manager

1Linus Torvald on git: http://www.youtube.com/watch?v=4XpnKHJAok8



Distribution

Distributed

Everybody has his own branch (or several), branching is inherent
Branching and especially merging in centralized SCMs is difficult so
people don’t do it (much).
Commits are local
Pull from each other within a (sub)group and merge within a
(sub)group. When finished, ask the main group to pull from them.

Collaboration

Commits do not disturb others
No special write access allows for much higher trust and security

Off-line work

Network connection is not needed to work with the repository
(logs, commits, . . . ), so you can work anywhere (without access to
the server).



Distribution

Distributed

Everybody has his own branch (or several), branching is inherent
Branching and especially merging in centralized SCMs is difficult so
people don’t do it (much).
Commits are local
Pull from each other within a (sub)group and merge within a
(sub)group. When finished, ask the main group to pull from them.

Collaboration

Commits do not disturb others
No special write access allows for much higher trust and security

Off-line work

Network connection is not needed to work with the repository
(logs, commits, . . . ), so you can work anywhere (without access to
the server).



Distribution

Distributed

Everybody has his own branch (or several), branching is inherent
Branching and especially merging in centralized SCMs is difficult so
people don’t do it (much).
Commits are local
Pull from each other within a (sub)group and merge within a
(sub)group. When finished, ask the main group to pull from them.

Collaboration

Commits do not disturb others
No special write access allows for much higher trust and security

Off-line work

Network connection is not needed to work with the repository
(logs, commits, . . . ), so you can work anywhere (without access to
the server).



Network of Trust

Which branch to
use?

Use only branches from trusted sources. In practice, only a few
branches are widely used.



Reliable: Trust & Security

Reliable SCM guarantees that you get what you put in.

Distributed systems are mostly inherently safer:
No single point of failure - no single repository is more important
than other
Natural replication of data - you can recover your repository by
pulling someones branch
Natural security boundaries - people can make changes without
write access to your computer!
Automatic corruption check - git checksums everything with a
strong hash (SHA1) and checks it at every use



Reliable: Trust & Security

Reliable SCM guarantees that you get what you put in.

Distributed systems are mostly inherently safer:
No single point of failure - no single repository is more important
than other
Natural replication of data - you can recover your repository by
pulling someones branch
Natural security boundaries - people can make changes without
write access to your computer!
Automatic corruption check - git checksums everything with a
strong hash (SHA1) and checks it at every use



Reliable: Trust & Security

Reliable SCM guarantees that you get what you put in.

Distributed systems are mostly inherently safer:
No single point of failure - no single repository is more important
than other
Natural replication of data - you can recover your repository by
pulling someones branch
Natural security boundaries - people can make changes without
write access to your computer!
Automatic corruption check - git checksums everything with a
strong hash (SHA1) and checks it at every use



Reliable: Trust & Security

Reliable SCM guarantees that you get what you put in.

Distributed systems are mostly inherently safer:
No single point of failure - no single repository is more important
than other
Natural replication of data - you can recover your repository by
pulling someones branch
Natural security boundaries - people can make changes without
write access to your computer!
Automatic corruption check - git checksums everything with a
strong hash (SHA1) and checks it at every use



Reliable: Trust & Security

Reliable SCM guarantees that you get what you put in.

Distributed systems are mostly inherently safer:
No single point of failure - no single repository is more important
than other
Natural replication of data - you can recover your repository by
pulling someones branch
Natural security boundaries - people can make changes without
write access to your computer!
Automatic corruption check - git checksums everything with a
strong hash (SHA1) and checks it at every use



Reliable: Trust & Security

Reliable SCM guarantees that you get what you put in.

Distributed systems are mostly inherently safer:
No single point of failure - no single repository is more important
than other
Natural replication of data - you can recover your repository by
pulling someones branch
Natural security boundaries - people can make changes without
write access to your computer!
Automatic corruption check - git checksums everything with a
strong hash (SHA1) and checks it at every use



Performance

If a tool can do something really fast and well, people will start
using it!

Linux Torvald on git

Performance affects how you work and affects quality
Merge of the kernel (22,000 files) takes git less than a second
Git enables easy merging, in contrast to centralized SCMs, and this
encourages developers to merge often and early



Content Management

Repository is much more than just a random collection of files.

Git tracks content, not files:

Example What happened to [part of] the project?
(Project=SPASE descriptions, Part=VMO-guaranteed metadata)

Git can tell history of a function moved from one file to another.
no other SCM can do that. But git doesn’t tell file history.

History must always be seen on a project basis!



Content Management

Repository is much more than just a random collection of files.

Git tracks content, not files:

Example What happened to [part of] the project?
(Project=SPASE descriptions, Part=VMO-guaranteed metadata)

Git can tell history of a function moved from one file to another.
no other SCM can do that. But git doesn’t tell file history.

History must always be seen on a project basis!



Content Management

Repository is much more than just a random collection of files.

Git tracks content, not files:

Example What happened to [part of] the project?
(Project=SPASE descriptions, Part=VMO-guaranteed metadata)

Git can tell history of a function moved from one file to another.
no other SCM can do that. But git doesn’t tell file history.

History must always be seen on a project basis!



Content Management

Repository is much more than just a random collection of files.

Git tracks content, not files:

Example What happened to [part of] the project?
(Project=SPASE descriptions, Part=VMO-guaranteed metadata)

Git can tell history of a function moved from one file to another.
no other SCM can do that. But git doesn’t tell file history.

History must always be seen on a project basis!



Content Management

Repository is much more than just a random collection of files.

Git tracks content, not files:

Example What happened to [part of] the project?
(Project=SPASE descriptions, Part=VMO-guaranteed metadata)

Git can tell history of a function moved from one file to another.
no other SCM can do that. But git doesn’t tell file history.

History must always be seen on a project basis!



The Lesson

VxOs

Face similar problems as Linux kernel development (distributed,
distributed, distributed, . . . , distributed)
Need to keep track of and exchange metadata and source code —
they should employ SCMs (and not develop their own equivalent
tools)
Should consider a distributed SCM like git which has proven
superior over other SCMs in Linux kernel development


	 
	Abstract
	Status
	The OSS approach
	Centralized and Distributed SCM
	Git

